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Abstract

The deformation of an inextensible, curved elastic beam subjected to axial load is studied using the Bernouilli–Euler
hypothesis and including the effect of large displacements. The axial displacement of the beam was expressed as a func-
tion of the axial load in terms of two incomplete elliptic integrals and contained a singularity as the beam was fully
straightened. The nature of the singularity was determined and the load–axial displacement curves were accurately
fitted to a rational expression with the same type of singularity, which provides an analytical expression for the evolu-
tion of the beam stiffness during deformation. Another analytical expression (although implicit) was obtained in the
case of extensible beams, where the elongation due to normal stresses cannot be neglected. These results are relevant
to the simulation of the elastic deformation of non-woven felts.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-woven fabrics are a cost-effective type of low density felts in view of the easy and high speeds of
their manufacture, which greatly exceed those attainable by knitting and weaving machines. Non-woven
felts and sheets made up of polyethylene fibers have found many applications in the construction and pack-
aging industries and protective apparel against corrosive liquids and harmful particles (E.I. DuPont de
Nemours Inc., 2004; DSM, 2004). Moreover, the structure of polyethylene fiber felts leads to an outstand-
ing tear resistance and energy absorption capability, and they perform exceptionally well to protect against
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Fig. 1. Scanning electron micrograph of a polyethylene felt showing the network of curved fibers which make up the structure.
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fragments of exploding bombs. Polyethylene felts are manufactured by depositing the short fibers into a
mat which is consolidated by thermal, mechanical or chemical mechanisms to induce bonds at filament
crossover points, providing a self-sustaining structure. The microstructure of the felt is made up of a net-
work of curved fibers linked to each other (Fig. 1). This provides a very flexible structure under in-plane
deformation as the fibers are progressively straightened (Chocrón et al., 2002). The initial stiffness depends
obviously on the characteristics of the fiber network (felt density, fiber orientation, number of bonds per
unit area, etc.) and on the stiffness of the curved fibers. Many models have been developed in the past
(mainly in the paper community) to account for the influence of the above parameters but they always as-
sumed that the fibers behave as elastic Bernouilli–Euler or Timoshenko beams within the framework of the
small displacements theory (Cox, 1952; Van den Akker, 1962; Ostoja-Starzewski and Stahl, 2000; Perkins,
2001). While this is a good approximation for paper and other felts made up of straight fibers, the low ini-
tial modulus of the polyethylene felts is controlled by the stiffness of the folded fibers which is significantly
lower than that of straight ones and varies in several orders of magnitude during deformation as a result of
the shape change.

The elastic deformation of a cantilever beam including the effect of large displacements was first ad-
dressed by Bisshopp and Drucker (1945) for the particular case of a concentrated load perpendicular to
the beam axis, and various results of the deformation of elastic cantilevers expressed in terms of elliptic inte-
grals can be found in Frisch-Fay (1962). Numerical solutions for the deformation of beams subjected to
different loads (bending, shear, crushing) and made of non-linear materials can be found in Lee (2002)
and Teng and Wierzbicki (2003) and references therein. However, no analytical solution is available in
the literature for the stiffness of a curved beam subjected to axial load including the effect of large displace-
ments, and this study aims at covering this gap.
2. Problem formulation

The problem under consideration belongs to a class of elastic beam problems which are known to be
integrable and is depicted schematically in Fig. 2, where the initial and the deformed configurations are
shown for the curved beam subjected to an axial load P along the horizontal axis. Subscript 0 in any mag-
nitude stands for the initial, undeformed beam, while variables without this subindex refer to the deformed
configuration. The initial beam length is 2l0 and increases to 2l during deformation. The positions of a given
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Fig. 2. Diagram showing the initial and deformed beam configurations.
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section of the beam in the initial and in the deformed configuration are identified, respectively, by the cur-
vilinear coordinates s0 and s along the beam or by the corresponding pairs of cartesian coordinates (x0,y0)
and (x,y). The initial curvature of the beam is constant and equal to 1/R0 and the beam is progressively
straightened under the action of the external load P. The axial stiffness of the beam, which changes contin-
uously during deformation, can be computed once the horizontal displacement of the beam end,
dh = 2x(l) � 2x0(l0), is expressed as a function of the applied load, and this is the objective of the mathe-
matical analysis. It is assumed that the beam material behaves as a linear elastic solid characterized by
its elastic modulus E, and that the effect of shear deformation can be neglected.

The bending moment, M, at a distance s from the beam center can be expressed as M = P[y(l) � y(s)].
The total beam curvature at this section can be computed by adding to the initial curvature 1/R0 the con-
tribution due to the bending moment, which is given by
dh
ds

¼ 1

R0

� M
EI

¼ 1

R0

� P ½yðlÞ � yðsÞ�
EI

ð1Þ
according to the Bernouilli–Euler hypothesis, where I is the moment of inertia of the beam section. The
bending moment straightens the beam and reduces the curvature, leading to the minus sign in Eq. (1). Dif-
ferentiating this equation with respect to s and taking into account that dy=ds ¼ sin h leads to
d2h
ds2

¼ P
EI

dy
ds

¼ P
EI

sin h ð2Þ
and this differential equation can be integrated as
1

2

dh
ds

� �2
¼ � P

EI
cos h þ C ð3Þ
in which C is an integration constant (which depends on P) that can be easily obtained by considering that
the radius of curvature should be constant and equal to R0 when P = 0 and that the bending moment at
s = l is zero and thus the curvature induced by bending should also be zero. If h(l) = hl, the curvature
can be expressed as
dh
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R2
0

� 2P
EI

ðcos h � cos hlÞ
s

ð4Þ
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and the horizontal coordinate of the beam end is given by
xðlÞ ¼
Z l

0

cos hds ¼
Z hl

0

cos hdhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R2
0

� 2P
EI ðcos h � cos hlÞ

q ð5Þ
as a function of hl. This equation is transformed after some mathematical manipulation to
xðlÞ ¼ m

ffiffiffiffiffi
EI
P

r
1þ 2

m2

� �
F ½hl=2 j �m2� � 2

m2
E½hl=2 j �m2�

� 	
ð6Þ
in which
m2 ¼ 4PR2
0

EI � 4PR2
0sin

2 hl
2

ð7Þ
and F[hl/2 j �m2] and E[hl/2 j �m2] stand, respectively, for the incomplete elliptic integrals of first and sec-
ond kind. The axial beam displacement, dh ¼ 2xðlÞ � 2R0 sin hl0 (where hl0 = l0/R0) is expressed as
dh ¼ 2m

ffiffiffiffiffi
EI
P

r
1þ 2

m2

� �
F ½hl=2 j �m2� � 2

m2
E½hl=2 j �m2�

� 	
� 2R0 sin hl0 ð8Þ
and is a function of the applied load P, the bending stiffness EI, and the initial curvature, 1/R0. The param-
eter hl in this equation depends on whether the beam length changes upon loading and it is determined
below.

2.1. Inextensible beams

If the total beam length remains constant and equal to l0 during deformation
l ¼ l0 ¼
Z l0

0

ds ¼
Z hl

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R2
0

� 2P
EI ðcos h � cos hlÞ

q ð9Þ
according to Eq. (4), which leads to
l0 ¼ m

ffiffiffiffiffi
EI
P

r
F ½hl=2 j �m2� ð10Þ
after some mathematical manipulation. This integral equation can be solved numerically for each value of
P to determine the corresponding angle hl at the beam end, which is used to compute the horizontal beam
displacement.

2.2. Extensible beams

When the beam elongation due to the normal stresses cannot be neglected, each section of the beams
undergoes an axial deformation and its length is given by
ds ¼ 1þ P
EX

cos h

� �
ds0 ð11Þ
where X stands for the area of the cross-section. Clearly
l0 ¼
Z l0

0

ds0 ¼
Z l0

0

ds
1þ P

EX cos h

 � ð12Þ
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and replacing ds by dh according to Eq. (4), followed by some algebraic transformations, leads to
l0 ¼ m

ffiffiffiffiffi
EI
P

r
1

ð1þ P=EXÞP½n; hl=2 j �m2� ð13Þ
where
n ¼ 2P
EX þ P

ð14Þ
and P[n,hl/2 j �m2] is the incomplete elliptic integral of third kind. The solution of this integral equation
provides the angle hl at the beam end that can be used to compute the corresponding horizontal beam dis-
placement. Eq. (13) becomes Eq. (10) when EX/P! 0, and the result for inextensible beams is recovered.
3. Results

3.1. Inextensible beams

The evolution of the applied P and the axial beam displacement, dh, provided by Eq. (8) for an inextensi-
ble beam can be expressed in non-dimensional form using the functions
bP ¼ EIdmax

R3
0

and dmax ¼ 2l0 � 2R0 sin hl0 ð15Þ
where dmax is the maximum axial displacement of the inextensible beam, attained when the beam is fully
extended along the loading axis. These are plotted in Fig. 3 for beams of equal initial length l0 = p/2
and radii of curvature R0 = 2,3,4, and 8. As expected, the beam axial stiffness increases rapidly during
deformation up to infinity as the beam is progressively extended along the loading axis. This variation
of the fiber stiffness at the beginning of the deformation controls the initial elastic deformation of polyeth-
ylene felts (Chocrón et al., 2002) and it is useful to obtain an accurate and simple analytical expression for
the beam behavior, which can be used as the basis for simulation of the elastic deformation of felts. This
task requires the previous analysis of the singularity in the curves as dh ! dmax.

The characteristics of this singularity can be determined by analyzing Eqs. (8) and (10) within the limit
hl ! 0. For instance, Eq. (10) becomes
l0 ¼ m

ffiffiffiffiffi
EI
P

r
hl

2
þOðh3

l Þ þ 
 
 
 ð16Þ
after developing the incomplete elliptic integral of first kind in Taylor power series at hl ! 0. Neglecting the
third and higher order terms in hl and after some mathematical transformations, it can be shown that
lim
hl!0

P ¼ EI

R2
0

1

h2
l

ð17Þ
Similarly, Eq. (8) becomes
dmax � dh ¼ 2l0 � 2m

ffiffiffiffiffi
EI
P

r
1þ 2

m2

� �
F ½hl=2 j �m2� � 2

m2
E½hl=2 j �m2�

� 	
ð18Þ
Replacing l0 by the expression given in Eq. (10), followed by developing the elliptic integrals in Taylor
power series at hl ! 0, and neglecting the fourth and higher order terms in hl led to (after a cumbersome
mathematical manipulation)
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Fig. 3. Non-dimensional plot of the evolution of the beam axial displacement, n = dh/dmax, as a function of the applied load, P=bP for
inextensible beams of length p/2. (a) Diagram of the initial shape of the beams indicated by hl0. (b) Results for beams with initial radius
of curvature R0 = l0/hl0 = 4 and 8. (c) Results for beams with initial radius of curvature R0 = l0/hl0 = 2 and 3. The exact result of Eq.
(8) is plotted together with the analytical approximation provided by Eq. (25).
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lim
hl!0

ðdmax � dhÞ ¼
R
2

h3
l ð19Þ
Thus, although P is singular at hl ! 0, it is possible to propose a new function P(1 � dh/dmax)
2/3 whose limit

at hl ! 0 is finite and given by
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lim
hl!0

P 1� dh

dmax


 �2=3

¼ lim
hl!0

P ð1� nÞ2=3 ¼ EI

22=3R4=3
0 d2=3

max

ð20Þ
in which n = dh/dmax.
It is easy to obtain an analytical expression for the initial horizontal stiffness of the beam of radius R0

(which stands for the initial configuration of the curved beam analyzed here, Fig. 2) from linear beam the-
ory. The elastic energy stored in the beam, U, at the beginning of deformation is given by
U ¼ 2

Z l0

0

1

2

Mðs0Þ2

EI
ds0 ¼

Z l0

0

P 2½yðl0Þ � yðs0Þ�2

EI
ds0 ð21Þ
and the initial horizontal displacement, dh0, can be computed following Castigliano�s theorem as
dh0 ¼
@U
@P

¼ 2PR3
0

EI
/ ð22Þ
after some algebra, where / is a constant given by
/ ¼
Z hl0

0

ðcos f � cos hl0Þ2 df ¼ hl0 þ
hl0

2
cos 2hl0 �

3

4
sin 2hl0 ð23Þ
Eq. (22) gives the stiffness of the curved beam at the beginning of deformation (n = 0) and thus
d½Pð1� nÞ2=3�
dn

�����
n¼0

¼ EI

2R3
0/

dmax ð24Þ
and the function P(1�n)2/3 can be fitted by the minimum squares method to a polynomial function, which is
given by
P

P̂
¼ n

2/
1� bn2

ð1� nÞ2=3
where b ¼ 1� 21=3/

R0

dmax

� �5=3
ð25Þ
Eq. (25) provides an accurate fit to the exact solution of P � dh curves given by Eq. (8) for inextensible
beams in the whole range of material properties and initial curvatures, as shown in Fig. 3 for beams of
length l0 = p/2 and radius of curvature in the range 2–8. The maximum error in load predicted by Eq.
(25)—as compared to the exact solution of Eq. (8)—is always below 5%, and Eq. (25) can be used confi-
dently to predict the axial stiffness of a curved, inextensible beam.

3.2. Extensible beams

The non-dimensional load–axial displacement curves provided by Eq. (8) for extensible beams are plot-
ted in Fig. 4(a) and (b) for a set of beams of initial length l0 = p/2 and radius of curvature R0 = 2 and 8,
respectively. The extensibility of the beams in this figure is shown by the non-dimensional parameter
ðX=l0ÞðR3

0=IÞ, whose value is given in bold characters next to each curve. The inextensible behavior is pro-
gressively recovered as this parameter increases.

The beam elongation due to the action of normal forces eliminates the singularity of P at n ! 1 and the
beam axial stiffness departed from the results obtained for inextensible beams. Obviously, the differences
between the extensible and inextensible behavior are most significant as n approaches 1, and it is sensible
to fit the new results by modifying Eq. (25) in this region.

In the case of extensible beams of initial length l0, the axial stiffness approaches that of a straight column
of length l0 as the beam is fully extended. The elongation of the straight column, dh � dmax, can be expressed
as
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Fig. 4. Non-dimensional plot of the evolution of the beam axial displacement, n = dh/dmax as a function of the applied load, P=bP for
extensible beams of length p/2. (a) Initial radius of curvature R0 = l0/hl0 = 2. (b) Initial radius of curvature R0 = l0/hl0 = 8. The bold
numbers next to each curve stand for the beam extensibility given by ðX=l0ÞðR3

0=IÞ. The exact solution of Eq. (8) is plotted together with
the analytical approximation of Eq. (28).

1544 C. González, J. LLorca / International Journal of Solids and Structures 42 (2005) 1537–1545
dh � dmax ¼ P
l0
EX

ð26Þ
The axial displacement of a curved, extensible beam can be approximated by adding the elongation due to
bending of an inextensible beam (Eq. (25)) and the axial displacement corresponding to the elongation of a
straight column (Eq. (26)). This second term can be expressed in non-dimensional form as next =
(dh � dmax)/dmax, in which the axial elongation due to normal stresses is divided by the maximum axial dis-
placement of the inextensible beam, leading to
next ¼
l0
X

I

R3
0

PbP ð27Þ
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which shows that the beam elongation due to normal stresses (normalized by maximum axial displacement
due to bending) is controlled by the parameters X/l0 and R3

0=I , which are related, respectively, to the normal
stiffness of the beam section and to the beam axial displacement due to bending. Finally, the total beam
elongation can be computed as
n ¼ nin þ next ¼ nin þ
l0
X

I

R3
0

PbP ð28Þ
where nin is obtained by solving the equation
PbP ¼ nin

2/
1� bn2

in

ð1� ninÞ2=3
ð29Þ
and the approximation provided by Eq. (28) is compared with the exact numerical results in Fig. 4. The
analytical––although implicit––fit of Eq. (28) is again excellent even in the cases where the beam elongation
is important to determine the axial stiffness.
4. Conclusions

An analytical expression is obtained for the axial displacement of a curved, inextensible elastic beam sub-
jected to axial load. The beam deformation was determined from the Bernouilli–Euler hypothesis and in-
cluded the effect of large displacements. The evolution of the axial displacement as a function of the applied
load was expressed in terms of two incomplete elliptic integrals and presented a singularity as the beam was
fully extended along the loading axis. The nature of the singularity was determined and the load–axial dis-
placement curves were accurately fitted to a polynomial expression with the same type of singularity, which
provides the evolution of the beam stiffness during deformation. Following the same procedure, the behav-
ior of an extensible beam, where the elongation due to the normal stresses cannot be neglected, was also
obtained, and the corresponding load–axial displacement curves were fitted to another analytical expres-
sion––although implicit––derived from the one developed for inextensible beams.
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